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A B S T R A C T   

Computer vision technologies have attracted significant interest in precision agriculture in recent years. At the core of 
robotics and artificial intelligence, computer vision enables various tasks from planting to harvesting in the crop 
production cycle to be performed automatically and efficiently. However, the scarcity of public image datasets 
remains a crucial bottleneck for fast prototyping and evaluation of computer vision and machine learning algorithms 
for the targeted tasks. Since 2015, a number of image datasets have been established and made publicly available to 
alleviate this bottleneck. Despite this progress, a dedicated survey on these datasets is still lacking. To fill this gap, this 
paper makes the first comprehensive but not exhaustive review of the public image datasets collected under field 
conditions for facilitating precision agriculture, which include 15 datasets on weed control, 10 datasets on fruit 
detection, and 9 datasets on miscellaneous applications. We survey the main characteristics and applications of these 
datasets, and discuss the key considerations for creating high-quality public image datasets. This survey paper will be 
valuable for the research community on the selection of suitable image datasets for algorithm development and 
identification of where creation of new image datasets is needed to support precision agriculture.   

1. Introduction 

Precision agriculture, as the hallmark of agriculture 4.0 era (De 
Clercq et al., 2018), has promised to revolutionize agricultural practices 
through the use of monitoring and intervention technologies for in
creasing production efficiency while reducing environmental impacts. 
Computer vision technologies that use digital images to interpret and 
understand the world, are capable of providing accurate, site-specific 
information about crops and their environments. Depending on appli
cations, a computer vision system uses different sensing modalities, 
such as color or RGB (red-green-blue) imaging that simulates human 
vision for visual inspection, near-infrared (NIR) multispectral or hy
perspectral imaging for detecting more elusive biological processes, or 
ranging sensors for geometrical measurements. Today, computer vision 
has been extensively utilized for supporting precision agriculture (also 
known as agro-vision) tasks, such as crop monitoring and phenotyping, 
weed control, harvesting, vehicle guidance and yield mapping (Bulanon 
et al., 2020; Mavridou et al., 2019; Patrício and Rieder, 2018; Wang 
et al., 2019). 

Computer vision-based agricultural robotics and artificial in
telligence are being increasingly recognized as a key enabler for pre
cision agriculture. Agricultural robots (e.g., unmanned autonomous 
vehicles) have the potential to conduct the majority of the tasks that are 
conventionally undertaken by human-operated agricultural machines 
or humans (Bechar and Vigneault, 2016; Bogue, 2016), such as field 

scouting, weed management and harvesting (Shamshiri et al., 2018). A 
field scouting robot, in the form of an unscrewed ground rover or aerial 
system, allows monitoring and diagnosis of crop growth and health at 
varied spatial and temporal scales. Robotic weeding uses computer vi
sion for crop and weed detection, and removes weeds by selectively 
applying herbicides to the detected weeds (Lamm et al., 2002; Raja 
et al., 2020) or through a mechanical cultivator (Tillett et al., 2008), 
providing novel chemical-reduced or non-chemical weeding strategies. 
Similarly, robotic harvesting relies on the detection of agricultural 
products on the plant and then instructs manipulators and end effectors 
for performing harvesting operations (Bac et al., 2014; Sarig, 1993). 

Common to all computer vision-based precision agriculture tasks is 
presumably the goal of detecting the objects of interest (e.g., crop, weed 
or fruit) and discriminating them from the rest of the scene. To achieve 
this requires, in addition to a well-designed hardware system, a robust 
data analysis pipeline that generally involves training of machine 
learning models with specific image datasets. A high-quality, large- 
scale dataset is of vital importance to the performance of the developed 
data analysis pipeline and the success of the end task. Preparation of 
such a dataset, however, is not trivial because of the efforts and costs 
required for image acquisition, categorization and annotation, as well 
as physicochemical measurements of crops in some cases. Data sharing, 
which is seen to have a vast potential for fostering scientific progress, 
provides an effective way for addressing the difficulty with data pre
paration for precision agriculture tasks. Making datasets publicly 
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available saves the significant resources associated with data prepara
tion, and also enables benchmarking of image analysis and machine 
learning algorithms developed among different research groups (Lobet, 
2017). 

The computer vision community has enjoyed a proliferation of 
public, annotated image datasets, such as PASCAL VOC (Everingham 
et al., 2010), COCO (Lin et al., 2014), ILSVRC (Russakovsky et al., 
2015), and recently Open Images V4 (Kuznetsova et al., 2020), leading 
to remarkable successes in object detection/segmentation tasks and 
novel modeling architectures. These datasets that consist of images 
from the Internet sources or for natural scenes or objects, however 
cannot directly translate to precision agriculture applications. While 
there are also a variety of image datasets dedicated to plants, such as 
Leafsnap (Redmon and Farhadi, 2018), PlantVillage (Mohanty et al., 
2016) and among others (Lobet, 2017; Lobet et al., 2013), they are 
primarily targeted for botanical taxonomy or plant phenomics, and 
generally collected under controlled laboratory conditions. Enabling 
computer vision for precision agriculture requires more specialized 
datasets for such tasks as robotic management and crop monitoring, 
especially datasets collected under more realistic field conditions. 
Moreover, there is a need for vast amounts of data (e.g., tens or hun
dreds of thousands of images) to power advanced deep learning systems 
(Sun et al., 2017), so as to account for a wide range of field conditions 
(e.g., crop growth status, surface soil characteristics and variable light). 
As computer vision and machine learning continue to impact agri
culture, since 2015 there have been an increasing number of public 
image datasets designated for precision agriculture tasks. Some of them 
are released through dataset publications and others are shared ac
companied with the associated research articles. 

To the best of our knowledge, no survey of public image datasets for 
precision agriculture has previously been carried out or published. 
Given the significant progress in this area, we believe such a survey 
would be greatly valuable for the research community by providing a 
compilation of resources and inspiring new efforts on algorithm de
velopment and benchmarking for computer vision tasks in agriculture. 
This paper is therefore to provide the first survey and analysis of the 
public image datasets for precision agriculture. To identify the datasets, 
a literature search was conducted in a systematic manner. The common 
databases, including Google Scholar, ScienceDirect, Springer, Web of 
Science, IEEE Xplore and the USDA Ag Data Commons repository, were 
searched with the following keywords, that is, “dataset”, “agriculture”, 
“crop” and “computer vision”. The search retrieved 5870 records in 
Google Scholar, 1201 in Science Direct, 1170 in Springer, 49 in Web of 
Science, 52 in IEEE Xplore and 3 in USDA Ag Data Commons. These 
records were further filtered based on the two inclusion criteria: 1) the 
dataset is publicly available without the need to make a request to the 
authors, and 2) it was collected in the field or quasi-field conditions 
instead of in the controlled laboratory environment. Since most of the 
datasets in literature were not released to the public, as a result, only 34 
search records agreed with the inclusion criteria and selected in this 
survey, among which the most prevalent applications are weed control 
(15 datasets) and fruit harvesting (10 datasets). 

The remainder of the paper is organized as follows. The main 
characteristics and details of the surveyed public image datasets are 
described in Section 2. Given the importance of image annotation and 
hosting platforms for dataset creation and sharing, these topics are 
discussed in Section 3. The recommendations and practical considera
tion for future creation of datasets are also provided in this section, 
followed by a brief conclusion given in Section 4. 

2. Public image datasets 

In this section, the public image datasets, based on targeted preci
sion agriculture tasks, are categorized into three classes, i.e., weed 
control, fruit detection and others, as summarized in Table 1–3 re
spectively. The description of each dataset is made systematically and Ta
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includes a collection of characteristics, including imaging device and 
configurations, image number, format and resolution, annotation type, 
applications and possible limitations. The image format, most often in 
png or jpg/jpeg, and resolution, which vary with imaging device and 
post-processing operations, are only described when they are consistent 
in a specific dataset. The datasets are presented in chronological and 
alphabetical order. 

2.1. Weed control 

2.1.1. CWFI dataset 
The CWFI (crop/weed field image) dataset (Haug and Ostermann, 

2015) is among the first public field datasets for weed control. A mul
tispectral camera, mounted to an autonomous field robot Bonirob 
(Ruchelshausen et al., 2009), as shown in Fig. 1, was used for image 
collection at a carrot farm. The camera was shaded and artificially lit to 
avoid changing light conditions, and the Red (R) and NIR channels of 
the camera were selected for imaging (but the images in the dataset are 
saved in the 3-channel format of R-NIR-R). The dataset consists of a 
total of 60 raw images of 1296 × 966 pixels in resolution, in png 
format, along with the corresponding binary images representing ve
getation masks and the pixel-level annotations that define weed, crop 
and soil background. The annotations are provided as three-channel 
images, as shown in Fig. 1(right) and also stored in separate YAML files. 
Although this dataset is relatively small, it has been utilized for eval
uating machine learning models for robotic weeding platforms (McCool 
et al., 2017; Fawakherji et al., 2019). 

2.1.2. Carrot-Weed dataset 
This dataset (Lameski et al., 2017), like the CWFI dataset, contains 

the images collected in a carrot field but using a low-cost phone camera 
under natural light conditions. It is also a small-scale dataset consisting 
of 39 RGB images, which are of jpg format and 1296 × 966 pixels in 
resolution, in addition to two sets of images defining vegetation masks 
and pixel-level annotations for the crop, weed and soil background, 
respectively. This dataset has been used for the crop and weed dis
crimination using textural features combined with random forest 
(Kamath et al., 2020). 

2.1.3. Plant seedlings dataset 
The plant seedlings dataset (Giselsson et al., 2017) contains a total 

of 407 RGB images of png format and varied size, which were acquired 
from plant seedlings belonging to 12 crop and weed species, at multiple 
times over a 20-day growth period. The authors built a portable, en
closed frame that held the camera at a fixed distance from the soil 
surface and ensured even and comparable light conditions for image 
acquisition. Each acquired image corresponds to a single plant species, 
and hence this dataset can be used as a benchmark for the crop and 
weed classification tasks (Dyrmann et al., 2018). Without detailed weed 
annotations, this dataset is not suitable for weed segmentation or de
tection tasks. 

2.1.4. Grass-Broadleaf dataset 
This dataset (dos Santos Ferreira et al., 2017) was created based on 

a set of the RGB images captured by an unpiloted aerial vehicle (UAV) 
flying at an altitude of about 4 m above ground level in a soybean field. 
Each of these images were automatically segmented into different 
patches using a linear iterative clustering super-pixel algorithm 
(Achanta et al., 2012) and then manually annotated into four classes 
(i.e., soybean, grass, broadleaf and soil). As a result, the dataset com
prises a total of 15,336 image patches of varied resolution in tiff format, 
being 3249 of soil, 7376 of soybean, 3520 grass and 1191 of broadleaf 
weeds. In addition to image classification, the authors used the dataset 
for evaluating unsupervised clustering algorithms for facilitating image 
annotations (dos Santos Ferreira et al., 2019). 

2.1.5. Sugar Beets 2016 dataset 
The Sugar Beets 2016 dataset (Chebrolu et al., 2017), represents an 

early effort of using a field robot equipped with multiple sensors to 
acquire a large-scale dataset for weed control as well as localization and 
navigation. The Bonirob robot (Ruchelshausen et al., 2009) was used to 
acquire four-channel RGB and NIR images, which are of 1296 × 966 
pixels in png format, under controlled lighting, on a sugar beet farm 
over a period of three months. In addition to the data for navigation, 
this dataset comprises 283 multi-class (i.e., sugar beet and nine dif
ferent types of weeds) annotated images at a pixel level, and an even 
larger set of about 12,340 images with three-class (i.e., crop, weed and 
background) pixel-level annotations. This dataset has been widely used 
for developing robotic crop and weed detection algorithms (Lottes 
et al., 2018; Milioto et al., 2018; Bosilj et al., 2020)). 

2.1.6. Synthetic SugarBeet weeds dataset 
The synthetic data (Cicco et al., 2017) represents a novel effort of 

artificially generating large-scale datasets for robotic weed control. 
Unlike most public datasets that are physically collected using vision 
sensors, this dataset was algorithmically created through procedural 
content generation (PCG) that is a widely used technique in computer 
graphics (Shaker et al., 2016), by modeling targeted plants and agri
cultural scenes with a few real-world textures (Cicco et al., 2017). The 
dataset contains a total of 8518 synthetic RGB images of 480 × 360 
pixels in png format, which are divided into four image sets composed 
of the mixture of sugar beet instances and different species of weeds. 
Each synthetic image is pixel-wise annotated for the crop, weed and soil 
backgound. Fig. 2 shows an example of a synthetic image and the 
corresponding annotations. The synthetic dataset can be directly used 
to train machine learning models or as a supplement to a relevant real- 
world image dataset with a limited amount of data, which would enable 
dramatic reduction of human efforts required for data collection and 
labeling. 

2.1.7. weedNet dataset 
The weedNet dataset (Sa et al., 2017) was collected from a con

trolled sugar beet field experiment, which contained three field sites for 
crop alone, a mixture of crop and weed, and weed alone. A UAV 

Fig. 1. Field robot for image acquistion (left), a sample of collected images (mid) and the annotioon (right). Reproduced from (Haug and Ostermann, 2015) with 
permission. 
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equipped with a four-channel multispectral camera at 2 m height was 
controlled for image acquisition. The resulting dataset comprises 375 
training images, including 132 for crop and 243 for weed, and 90 test 
images for the mixture of crop and weed, and all the images are in png 
format. Either training or test images evenly consist of three sets, i.e., 
Red, NIR and NDVI (normalized difference vegetation index, derived 
from Red and NIR images) of monochromatic images. The images are 
annotated, at pixel level for the crop, weed and background. 

2.1.8. Joint stem detection dataset 
This dataset (Lottes et al., 2018) was aimed at the task of detecting 

and differentiating dicot weed and grass weed, which may require 
different weeding methods, and also the stems of crop and the dicot 
weed, which would facilitate the implementation of plant-specific me
chanical weed removal. The released data contains two sub-datasets; 
the first one is derived from the Sugar Beets 2016 Dataset, including 
921 RGB + NIR images of 1296 × 966 pixels in png format, and the 
second consists of 400 RGB images of 512 × 384 pixels in png format, 
which was acquired by a UAV. For these images, pixel-level annotations 
for the crop, dicot weed, grass weed and background, and the stem 
positions are provided for semantic segmentation and stem detection 
tasks (Lottes et al., 2020). 

2.1.9. Leaf counting dataset 
The objective of this dataset (Teimouri et al., 2018) was to estimate 

weed growth stages by counting the leaf number of weeds to optimize 
herbicide spraying for weed removal. It contains 9372 RGB images of 
png format and varied resolution, for 18 weed species at different 
growth stages. The dataset is categorized into 9 classes based on the leaf 
number of each plant, ranging from 1 to more than 9 leaves, and the 
image number of each class ranges from 160 to 3292. All these images 
were acquired using smartphone cameras, in various field sites covering 
a range of soil types, image resolutions and light conditions. This da
taset is well suitable for evaluating multi-class image classification tasks 
with respect to leaf numbers, but not for weed species classification and 
semantic segmentation. 

2.1.10. Weed Map dataset 
The Weed Map dataset (Sa et al., 2018), which was created by the 

authors who published the weedNet dataset (Sa et al., 2017), is pre
sumably the largest multispectral aerial dataset for sugar beet weed 
segmentation and mapping publicly available. Two UAVs with a four- 
channel and five-channel multispectral cameras respectively were used 
for collecting images at 10 m height from sugar beet fields. It comprises 
eight sets of high-resolution orthomosaic maps with pixel-level anno
tations for the crop, weed and background, and a total of 10,196 title 
images that were small image patches or tiles cropped from these or
thomosaic maps, in a sliding window manner. This dataset provides a 
new benchmark of machine learning algorithms for generating large- 
scale orthomosaic map based weed mapping. 

2.1.11. DeepWeeds dataset 
The DeepWeeds dataset (Olsen et al., 2019) was to provide a large 

collection of weed images for deep learning based classification of weed 
species. This dataset comprises a total of 17,509 RGB images, which are 
of jpg format and 256 × 256 pixels in size, collected by a customized 
ground weed control robot, for eight weed species and various non- 
weed plants in natural field conditions without lighting control. Each 
weed species has more than 1000 images, which is desired for training 
complex deep learning models. Since this dataset only provides class 
labels for each image, it is tailored for the weed classification tasks 
(Lammie et al., 2019; Olsen et al., 2019), but without provision of pixel- 
level annotations, cannot be readily used for weed segmentation and 
localization. 

2.1.12. Crop weed discrimination dataset 
This dataset was used in (Bosilj et al., 2020) for evaluation of 

transfer learning from a model trained on a different crop for crop and 
weed segmentation, so as to reduce model training times and the efforts 
for dataset preparation. The dataset contains two small-scale image sets 
for carrot and onion crops respectively. The image data were acquired 
using a two-camera configuration with RGB and NIR cameras mounted 
apart on a manually pulled cart. Both crop sets consist of 20 high-re
solution (2428 × 1985 pixels for carrots and 2419 × 1986 pixels for 
onions) RGB-NIR images in png format. Two types of pixel-level an
notations are provided for the dataset, including full annotations for the 
crop, weed and soil background, and partial annotations in which some 
image regions are not annotated and marked as a mixed class, which 
would enable evaluating the performance of using imperfectly anno
tated data for saving image annotation times. 

2.1.13. Early crop weed dataset 
This dataset (Espejo-Garcia et al., 2020) was created to apply pre- 

trained deep learning models for crop and weed identification. The 
dataset targets two weed species, black nightshade and velvetleaf, at an 
early growth stage with 3–4 leaves, and also contains two crops, tomato 
and cotton. The image data were collected using a RGB camera in 
different field locations under natural light conditions. The resulting 
dataset contains 123, 130, 54 and 201 images, which are of jpg format 
and 4256 × 2832 pixels in size, for black nightshade, velvetleaf, to
mato and cotton, respectively, which are organized into the different 
folders denoting corresponding plant categories. Since each image 
contains a single plant species, the dataset is not suitable for crop-weed 
semantic segmentation and localization tasks. 

2.1.14. Ladybird Cobbitty Brassica dataset 
The Ladybird Brassica dataset (Bender et al., 2020) was collected by 

an autonomous robot Ladybird (Underwood et al., 2017), designed at 
the Australian Center for Field Robotics. Like the Sugar Beets 2016 
Dataset, this dataset also contains multimodal sensing data for crops as 
well as environment, and to our knowledge, it is the first public dataset 

Fig. 2. An example of a synethically generated RGB image (left) and the corresponding ground-truth pixe-wise annotations (right). These two images are randomly 
selected from the Synthetic dataset (Cicco et al., 2017). 

Y. Lu and S. Young   Computers and Electronics in Agriculture 178 (2020) 105760

5



of field crops having the combined data by stereo vision, thermal and 
hyperspectral (in the wavelngth range of 400–1000 nm) imagery. 
Weekly scans were performed for cauliflower and broccoli vegetables 
over a 10-week period from transplant to harvest. Due to high-resolu
tion hyperspectral data, the whole dataset of over 2.8 T is significantly 
larger than the aforementioned datasets. While this dataset provides a 
rich source of information for research opportunities in crop detection 
and growth modeling, they are not annotated at either image or pixel 
level, which, also given computer memory constraints, may discourage 
future explorations of the dataset by other users. 

2.1.15. Open plant Phenotype Database (OPPD) 
The OPPD (Madsen et al., 2020) is a dataset collected from a diversity 

of plant seedlings of 47 weed species. These plants were cultivated in a 
semi-field, controlled setting under three different (i.e., ideal, drought and 
natural) growth conditions to ensure a high degree of intra-species var
iations of plant visual appearances. Data collection was performed over 
four trial growth seasons, and the plants from each trial were temporally 
tracked after from seedling emergence to the stages of up to 6–8 leaves. 
The resulting dataset consists of 7,590 RGB images in jpg format, which 
represent 64,292 individual plants. Each of the images is annotated with a 
label of corresponding weed species and, and bounding boxes for the 
plants, which were achieved via a machine learning based annotation tool 
RoboWeedMaPS (https://vision.eng.au.dk/roboweedmaps/) in conjunc
tion with manual corrections. This datasets allows for evaluating both the 
tasks of plant classification and instance detection. 

2.2. Fruit detection 

2.2.1. DeepFruits dataset 
This dataset was utilized for fine-tuning for pre-trained deep 

learning models for fruit detection (Sa et al., 2016). While the authors 
examined two image modalities in their work, the published dataset 
only consists of RGB images, which were collected in greenhouses and 
open fields. The dataset comprises 7 subsets of images for different 
fruits, including sweet pepper, rock melon, apple, mango, orange and 
strawberry, each of which has 42–170 images of varied resolution in 
png format and is partitioned into training and test sets. Bounding box 
annotations are provided for performing fruit detection. 

2.2.2. Orchard fruit dataset 
The dataset was collected in the orchard fields for three fruit vari

eties (i.e., apple, mango and almond) (Bargoti and Underwood, 2017a). 
The images for the apple and mango trees were acquired using an au
tonomous ground vehicle, while the almond data was acquired with a 
hand-held camera. The dataset consists of 1120 (size 308 × 202 pixels), 
1964 (size 500 × 500 pixels) and 620 (size 308 × 202 pixels) color 
images (in png format) for apple, mango and almond fruits, respec
tively. These images have been cropped into small patches from the raw 
high-resolution data for the ease of training deep neural networks that 
prohibit using large images due to hardware memory constraints. As 
shown in Fig. 3, circular annotations are provided for apples, while 
rectangular bounding box annotations are for mangoes and almonds, 
and in addition, pixel-level fruit annotations are also available for ap
ples. This dataset is suitable for benchmarking of transferring learning 
algorithms and also developing new deep learning architectures for 
fruit detection and segmentation (Bargoti and Underwood, 2017a,b). 

2.2.3. Date fruit dataset 
This dataset is the first one that is publicly available for date fruit 

pre-harvesting and harvesting applications (Altaheri et al., 2019b). The 
dataset was acquired in natural orchard environments and divided into 
two separate subsets for different applications. The first subset consists 
of 8079 color images of size 224 × 224 pixels in jpg format, with rich 
variations resulting from varied imaging angles and scales, variable 
illumination, different fruit varieties and maturity stages, and also 

different fruit bagging states. The images are labelled into different 
classes according to fruit variety, maturity and harvesting decision, 
which have been utilized for evaluating deep learning algorithms for 
fruit classification (Altaheri et al., 2019a). The second subset contains 
the images, videos, and weight measurements of date brunches that 
were acquired during the harvesting period. This dataset can be used 
for aiding in such tasks as yield estimation. 

2.2.4. KFuji RGB-DS dataset 
The KFuji RGB-DS dataset (Gené-Mola et al., 2019b; Gené-Mola 

et al., 2019a) is a collection of three-modality images integrating RGB, 
depth (D) and range-corrected IR intensity (S) data, for ‘Fuji’ apples on 
trees. The image data were acquired using Microsoft Kinect v2 cameras 
with depth image resolution of 512 × 424 pixels in jpg format, 
mounted on a mobile platform and in the night time under artificial 
lighting. Geometric registration was performed onto the raw data to 
build pixel-wise correspondences among the RGB, D and IR channels. 
The resulting dataset contains 967 multimodal images and bounding 
box based fruit annotations for a total of 12,839 apples. This dataset 
provides a new benchmark of fruit detection and localization algo
rithms for RGB-D sensor based field robots. 

2.2.5. MangoNet dataset 
The MangoNet dataset was collected for mango detection by a custo

mized deep semantic segmentation model MangoNet (Kestur et al., 2019). 
It consists of 49 high-resolution 4000 × 3000 color images in jpg format, 
which were collected in a mango orchard under natural illumination 
conditions, with 45 images for training and 4 for testing. Pixel-level an
notations are made for fruit and non-fruit classes for each image. To train 
deep learning models with the dataset, users need to crop the raw large 
images into small patches, e.g., 200 × 200 pixels in size for the MangoNet 
(Kestur et al., 2019), to circumvent the computation memory issues. Image 
cropping can be readily performed by sampling the entire image using a 
sliding window of the same size of the desired model input images. 

2.2.6. MangoYOLO dataset 
This dataset, which is also dedicated to mango fruit, was created for 

benchmarking of a deep learning architecture MangoYolo (Koirala 
et al., 2019), which is adapted from the object detectors YOLOv2 
(Redmon and Farhadi, 2017) and YOLOv3 (Redmon and Farhadi, 
2018), towards real-time fruit detection and orchard load estimation. In 
contrast to the MangoNet dataset, this dataset was collected at night 
with artificial lighting, with more consistent and better image contrasts. 
The images were captured by a RGB camera mounted on a ground 
vehicle. The resulting dataset has 1730 images (1300, 130 and 300 
images for training, validation and testing, respectively) of 612 × 512 
pixels in jpg format, and the bounding box fruit annotations, which 
were performed using a graphic image annotation tool labelImg 
(Tzutalin., 2015), are stored in XML files in the same fashion of the 
PASCAL VOC data (Everingham et al., 2010). 

2.2.7. WSU apple dataset 
This dataset (Bhusal et al., 2019) was created by the Agricultural 

Automation and Robotics Laboratory at Washington State University 
(WSU) for robotic harvesting and yield estimation. It consists of 2298 
RGB images (of varied resolution in png format) of apple trees, with the 
provision of bounding box fruit annotations. These images were ac
quired from multiple growth seasons and fruit varieties. The Laboratory 
also released another set of 1600 images acquired by RGB-D cameras 
(Fu et al., 2017), and some other dataset dedicated to agricultural ro
botics research (Zhang et al., 2020b; Zhang et al., 2020c). 

2.2.8. Fuji-SfM dataset 
The Fuji-SfM dataset was used in (Gené-Mola et al., 2020c) for de

tecting and locating apples in 3D space by integrating deep learning 
segmentation and structure-from-motion (SfM) photogrammetry. The 
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image data were collected using a handheld color camera in the natural 
orchard conditions, for 11 ‘Fuji’ apple trees. The dataset consists of 
three parts, including a total of 288 RGB images of 1024 × 1024 pixels 
in jpg format and the corresponding pixel-wise fruit annotations, which 
can be used for evaluation of 2D vision based fruit detection and seg
mentation algorithms, the multi-view images used for generating the 
3D model of the fruit trees by SfM, and the 3D point cloud of the 
scanned scene with 3D bounding box fruit annotations, which allows 
for benchmarking of 3D fruit detection and localization. 

2.2.9. LFuji-air dataset 
The LFuji-air dataset (Gené-Mola et al., 2020b) was created by the 

same research team for the KFuji RGB-DS (Gené-Mola et al., 2019b) and 
Fuji-SfM (Gené-Mola et al., 2020c). Like the other two datasets, the LFuji- 
air dataset also provides 3D information of the scene towards enhanced 
fruit detection, but it was collected using a light detection and ranging 
(LiDAR) system, which was mounted on an air-assisted sprayer for gen
erating different air flow conditions (Gené-Mola et al., 2020a). Compared 
to RGB cameras, LiDAR sensors are advantageous in accurate 3D mea
surements without being affected by varying outdoor illumination con
ditions. The dataset contains, in addition to the raw LiDAR data files in 
.pcap format, the generated point cloud data in .mat format and the 
corresponding 3D bounding box annotations in .txt format for a total of 
1353 apples of 11 fruit trees. This dataset represents the first one of 3D 
LiDAR data publicly available for fruit detection. 

2.2.10. MinneApple dataset 
The MinneApple data (Häni et al., 2020b) was created by a research 

team at University of Minnesota for apple detection. Compared to many 
other image datasets that are focused on a single fruit variety or from a 
single growth season, this dataset includes diverse images from multiple 
fruit varieties over two growth seasons. Data collection was done using a 
cell phone camera in video mode under natural illumination conditions, 
and the images were then extracted from the recorded video sequences. 
This dataset is divided into two sets of images that are dedicated to fruit 
detection and counting tasks (Häni et al., 2020a, b). The detection set 
consists of 670 and 311 images of size 1280 × 720 pixels in png format 
for training and test respectively. Pixel-level fruit annotations, which were 
made using VGG Image Annotator (VIA) (Dutta and Zisserman, 2019), are 
provided for the training images, representing a total of 41,325 object 
instances. The counting set consists of 64,595 images of jpg format, 2875 
and 3395 images of png format and varied resolutions for training, vali
dation and test respectively, and ground-truth fruit counts, ranging from 0 
to 6, are provided for the training and validation images. 

2.3. Other applications 

2.3.1. 3D broccoli 
The 3D Broccoli dataset was created for broccoli flower heads de

tection based on 3D vision, aimed at selective robotic harvesting 

(Kusumam et al., 2016, 2017). The image data was collected using a 
RGB-D camera (Microsoft Kinect v2) mounted on a tractor in different 
broccoli field sites under artificial lighting conditions. This dataset 
consists of 16 recorded videos, the accompanying 3D point cloud (.pcd) 
data files, and a set of color images of size 1920 × 1080 pixels in png 
format for one field site. This dataset provides a good resource for 
evaluating object segmentation and localization tasks using 3D point 
clouds as well as color images. 

2.3.2. Apple trees 
The Apple Trees dataset (Akbar et al., 2016) is also a collection of 

3D vision data but focused on geometric reconstruction of fruit trees to 
facilitate robotic tree pruning. The data were acquired for 9 apple trees 
of varied structure, i.e., 6 in outdoor orchard environments and 3 
present indoor, at different viewpoints. There are five types of in
formation about individual trees in the dataset, including depth and 
color images, which were also acquired using a Kinect v2 camera, la
beled ground-truth images by a regular color camera, ground-truth 
diameter measurements of primary tree branches, and relative dis
tances between a consecutive pair of primary branches. This dataset 
provides a new benchmark of 3D reconstruction and modeling algo
rithms of trees for pruning purposes. 

2.3.3. Capsicum Annuum dataset 
This dataset represents a novel effort of using synthesis methods for 

dataset creation for agricultural computer vision tasks (Barth et al., 2018). 
Unlike many other datasets, the Capsicum Annuum (i.e., sweet pepper) 
dataset was created synthetically rather than through manual image ac
quisition. The image synthesis was achieved by modeling of plant geo
metric parameters, color and textural features based on empirical mea
surements of realistic plants, followed by computational rendering. This 
dataset consists of 10,500 synthetic color images in png format, with pixel 
level segmentation of 8 classes of plant parts including stem, node, side 
shoot, leaf, peduncle, fruit and flower. The synthetic dataset provides a 
good starting point for benchmarking semantic segmentation tasks, but 
for real-world generalization, empirical or realistic images are needed for 
fine tuning of object detection and segmentation algorithms. 

2.3.4. Fruit flowers 
The Fruit Flowers dataset (Dias et al., 2018) was created for eva

luation of semantic segmentation networks for flower detection of tree 
fruits. The image data was collected for the flowers of three species, 
apple, peach and pear, using color cameras in natural orchard condi
tions. In the dataset, there are four sets of images, two for apple flowers 
and the other two for peach and pear flowers respectively, and the 
entire dataset contains 130 images of size 5184 × 3456 pixels and 60 
images of size 2704 × 1520 pixels. Pixel-wise annotations for flowers 
are provided in the form of separate sets of binary images, which were 
performed by initial freehand annotations followed by region growing 
refinement (Dias et al., 2019). 

Fig. 3. Examples of images (apple, mango and almond from left to right) with ground-truth fruit annotations. These images are randomly drawn from the dataset 
(Bargoti and Underwood, 2017a) and annotated based on the given annotations. 
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2.3.5. Sugarcane billets 
The Sugarcane billets dataset (Alencastre-Miranda et al., 2018) is 

collection of the images of sugar billets, which are short segments of 
sugarcane stalks used for mechanized planting, with different types of 
harvest-induced damage, aiming to identify billet damage as an initial 
effort of developing a robotic planter. Image acquisition was performed 
in both indoor and outdoor lighting conditions for a total of 786 billets 
of six classes (five types of damage plus no damage). The resulting 
dataset consists of 156 images of size 2448 × 2048 pixels in bmp 
format, most of which each comprises five billets of the same class. 
Class labels but no semantic segmentations are provided for this da
taset. 

2.3.6. Maize disease 
The Maize Disease dataset (Wiesner-Hanks et al., 2018) was dedi

cated to automated, field-based detection of North leaf blight (NLB), a 
common and devastating fungal foliar disease of maize. This data set 
contains RGB images of maize leaves taken in three different ways, 
including using a hand-held camera, a camera mounted on a boom and 
a camera mounted on a small UAV (at an altitude of 6 m). The images 
were taken in the field trials of maize that had been inoculated with the 
causal pathogen (Setosphaeria turcica) of NLB. The resulting dataset 
contains more than 18,222 images annotated with more than 105,735 
NLB lesions, representing the largest collection of images for any one 
plant disease (Wiesner-Hanks et al., 2018). The annotations were per
formed by human experts who drew lines down the main axis of in
dividual lesions, as indicated in Fig. 4, but did not delineate the lesion 
margins. In a later study, the authors investigated pixel-level annota
tions for the UAV images through crowdsourcing tasks, in which non- 
experts were asked to perform the lesion annotations based on the line 
annotations by the experts (Wiesner-Hanks et al., 2019). 

2.3.7. DeepSeedling 
The DeepSeedling dataset was created for detection and counting of 

cotton seedlings in the field using deep learning models (Jiang et al., 
2019). The raw data were recorded in the form of videos using three 
different color cameras with the same resolution of 1920 × 1080 
pixels, and the data collection was performed over two growth seasons 
at three field locations, but only for the seedlings at early growth stages 
of 7–11 days after planting. RGB images were extracted from the video 
clips to build up the dataset for plant seeding detection. In the dataset, 
there are three sets of images acquired at different locations, which 
contain 2391, 1821 and 1531 images of jpg format, respectively, and 
the corresponding bounding box annotations for cotton seedlings and a 
small portion of weeds. 

2.3.8. GrassClover 
The GrassClover dataset (Skovsen et al., 2019) is a diverse image 

segmentation and biomass dataset designed to support robust image 
analysis of heavily occluded mixed crops for precision management. 
The images contain dense populations of grass and clover mixtures with 

heavy occlusions and occurrences of a diversity of weeds. The dataset 
was collected with three ground based different acquisition platforms 
with digital cameras. Fig. 5 shows these imaging platforms and example 
images collected. The dataset is split into training and test sets. The 
training set consists of 8000 synthesized images with pixel-wise anno
tations, 31,600 unlabeled images, and additionally 152 images with 
plant canopy biomass composition information, which are all of jpg 
format. The synthesized images were generated based on the random 
integration of the plant crop-outs of different species and soil back
grounds from raw images (Skovsen et al., 2019), which allows creating 
large sets of annotated images with reduced efforts. The test set consists 
of 15 manually annotated images and 283 images with biomass in
formation. This dataset is the first one that supports the tasks of both 
image segmentation and biomass composition prediction. 

2.3.9. Oil radish growth 
The Oil Radish Growth dataset (Pire et al., 2019), which was created 

by the same institution for the GrassClover dataset, contains the image 
and biomass data from an oil radish field plot experiment. The image 
data were acquired using a RGB camera mounted in front of a tractor, 
which are of size 1601 × 1601 pixels in jpg format. In the released 
dataset, there are 95 training images with pixel-wise annotations for 
seven classes, including oil radish, barley/grass, weed, soil, equipment, 
stubble and the unknown, and 34 test images without annotations. 
Field data including fresh weight, dry weight, and the nitrogen content 
and contents of plant samples are provided for the training images. 

3. Discussion 

The scarcity of public image datasets remains a key bottleneck in 
developing next-generation computer vision and intelligent systems for 
precision agriculture. Despite the progress made in the past few years, 
significant efforts are needed to create new public image datasets, 
especially for many specific application domains where there are still 
no any dedicated public image datasets (Zhang et al., 2020a). This 
section therefore discusses the key considerations of addressing the 
bottleneck, regarding image acquisition, augmentation, annotation and 
data sharing, so as to provide some recommendations to assist re
searchers in the future tasks of public image dataset creation. 

3.1. Image acquisition 

Among the reviewed 34 public datasets, 24 datasets involve using 
RGB cameras for image acquisition, confirming the prevalence of this 
modality. RGB is advantageous in its low cost, high image resolution 
and fast speed, which are all desirable for precision agriculture appli
cations. Moreover, the acquired images can be readily fed into a wide 
range of existing machine learning frameworks for computer vision 
tasks as classification and object detection. RGB images, however, are 
sensitive to the light condition variations in the field, which pose 
challenges to the image segmentation and object detection. To alleviate 

Fig. 4. Examples of images randomly chosen from the Maize Disease dataset (Wiesner-Hanks et al., 2018), where the red lines denote the position of disease lesions 
based on the provided line annotations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the issue, one may construct an enclosed imaging chamber with lighting 
control (Giselsson et al., 2017), or acquire images at steady light con
ditions, e.g., during overcast days or in the night with artificial lighting 
(Koirala et al., 2019), at the cost of reduced working hours. An alter
native solution highlights the need for collecting a large-scale set of 
images in the varied natural light conditions and exploiting the capacity 
of deep learning models to tackle the light interference. The use of 
integrative RGB and NIR, i.e., multispectral color-infrared (CIR) mod
ality is becoming increasingly popular, which can potentially provide 
enhanced performance given the fact that NIR is less susceptible to the 
variations of visual appearance of plants. 

Imaging platforms are also a critical consideration for dataset 
creation. Currently most of the public datasets are collected using a 
ground-based platform, either an unscrewed field robot or a fixed 
platform, or simply by hand holding a camera. Although UAVs are 
gaining momentum in precision agriculture, the acquired data are not 
made publicly available in most cases. For real-world success, the da
taset should be tailored to targeted applications by matching the ima
ging platform with that to be used in realistic scenarios. For instance, 
for a dataset that is aimed at developing a robotic weeder, a ground- 
based , proximal imaging platform is more suitable than aerial imaging; 
and a camera-equipped ground robot or moving cart with a top-down 
imaging view camera and a proper plant-camera distance is more pre
ferable over hand-holding imaging, in which both the view angle and 
plant-camera distance are not easy to maintain. UAVs are well suited 
for large-scale crop scouting, while hand-hold imaging is useful when a 
specialized and cost-effective ground robot is not available. 

Many of the published datasets in this survey are rather small-scale 
in terms of image numbers (< 1000 per class), plant species included, 
and the diversity of environmental factors (e.g., different weather 
conditons and field sites), crop growth stages and seasons and or 
camera view angles, thus restricting their practical deployment. While 
some precision agriculture tasks, such as fruit picking, are generally 
completed within a short time window (e.g., one week), many other 
tasks such as weed control and crop scouting generally take a time span 
of several weeks or months throughout a growth season, which would 
require collecting images over multiple growth stages to fully capture 
the morphological and physiological features of the plants. Even for 
time-sensitive tasks such as harvesting, the plant parts may vary greatly 
in morphology and texture with growth seasons or geographic 

locations. Presently only very few datasets were aimed at addressing 
the diversity of crop growth by acquiring images at varied crop growth 
stages (Bender et al., 2020; Chebrolu et al., 2017), during multiple 
growth seasons (Häni et al., 2020b; Jiang et al., 2019), or in geo
graphically different field sites (Olsen et al., 2019). Thus, more efforts 
are needed to fill the gap when new datasets are to be created. 

3.2. Data augmentation 

Having large-scale datasets is highly desirable for boosting the 
performance of machine learning models (Halevy et al., 2009; Sun 
et al., 2017). As a rough rule of thumb, training deep learning models 
from scratch requires thousands of images per category for achieving 
human-level performance (Goodfellow et al., 2016). Transfer learning 
can reduce the image number requirement to as few as hundreds or 
even tens of images (Espejo-Garcia et al., 2020; Suh et al., 2018), but it 
should be noted that such approaches heavily rely on fine turning of the 
models pre-trained using the images that are generally irrelevant to 
domain precision agriculture tasks, which hence may not generalize 
well in practical applications. Despite the recognized need for larger 
datasets, the collection of sufficiently large datasets can be a daunting 
task due to the manual efforts and costs involved, and in some cases 
even infeasible for certain classes (e.g., rare diseases or weed species) 
that have very few occurrences in the field. 

Data augmentation, which algorithmically expands the scale of 
datasets, provides a promising means to address the insufficiency of 
physically collected image data. Among the datasets surveyed above, 
three of them used image synthesis methods (Barth et al., 2018; Cicco 
et al., 2017; Skovsen et al., 2019), based on PCG, physical modeling of 
plant texture and color features, and image shading, for data generation 
or augmentation. In addition to these methods, there are a suite of 
many other data augmentation techniques (Shorten and Khoshgoftaar, 
2019), among which data warping through geometric or color trans
formations are conventionally used in computer vision tasks. Recently, 
generative adversarial networks (GANs), which represent a novel fra
mework of generative modeling through adversarial training (Creswell 
et al., 2018; Goodfellow et al., 2014), have received increasing atten
tion as a new strategy for data augmentation. Much of the research on 
GANs for data augmentation has initially been done on the biomedical 
images (Yi et al., 2019) for disease recognition, and very recently this 

Fig. 5. Three imaging platforms (top row) and example images (bottom row) from the corresponding platforms above. Images are reproduced from (Skovsen et al., 
2019) with permission. 
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technique has been used for image generation for agro-vision tasks 
(Barth et al., 2020; Madsen et al., 2019). Currently these data aug
mentation techniques, including data warping and GANs, are mainly 
used during the model training processes, and have not been used for 
creating public image datasets for precision agriculture tasks. 

3.3. Image annotation 

Image annotation is a process of defining and describing regions of 
interest (ROIs) with labels in an image, or simply labeling the entire 
image rather than specific ROIs. It is an essential step to prepare a 
dataset with ground-truth information for subsequent tasks such as 
image classification and object detection, and also facilitate the reuse of 
the dataset by other researchers. Providing poor annotations or no 
annotations will significantly limit the usability of any public dataset in 
the research community, despite the efforts made for image acquisition. 

An image can be annotated manually or automatically (Bhagat and 
Choudhary, 2018). Automatic automation attempts to train a learning 
model with given image data and use the trained model to assign image 
or semantic labels automatically. This approach, although very attractive 
due to its efficiency, may not always work satisfactorily for challenging 
images, such as those for agricultural pattern recognition. Manual an
notation that uses human labor to annotate individual images is currently 
predominantly used for computer vision tasks in agriculture. For as
sisting in manual image annotations, numerous software tools have been 
developed and publicly available, such as labelImg that was used for 
annotating the MangoYOLO dataset (Koirala et al., 2019), and VIA 
(Dutta and Zisserman, 2019) that was used for annotating the Min
neApple dataset (Häni et al., 2020b). Table 4 presents a list of common 
open-source image annotation tools and their basic functionalities. 

With the dedicated tools as summarized in Table 4, image annota
tion can be readily done for a small set of images with high accuracy. 
However, when it comes to a large-scale, high-resolution dataset that 
consists of tens of thousands of images or even more, manual image 
annotation, especially at a pixel level, can be tremendously laborious 
and time consuming especially when performed by a single worker. For 
instance, it is reported that pixel-wise annotating an image in the crop 
weed discrimination data (Bosilj et al., 2020) took 15–20 min and in 
MinneApple dataset (Häni et al., 2020b) took up to 30 min. This likely 
explains the fact that some fully annotated datasets, such as the CWFI 
Dataset (Haug and Ostermann, 2015) and the Carrot-Weed Dataset 
(Lameski et al., 2017), only consist of a small number of images, while 
for the large datasets, like the GrassClover (Skovsen et al., 2019), only a 
subset of images have pixel-precision annotations. 

One solution to annotating a large set of images is to take a large 
cohort of individuals to perform the task, that is, annotate images via 
crowdsourcing, which requires much less time and has been success
fully deployed in annotating large-scale image sets in computer vision 
(Kovashka et al., 2016). Crowdsourcing is available via commercial 
platforms, among which Amazon’s Mechanical Turk (MTurk) 
(Buhrmester et al., 2011; Rashtchian et al., 2010) has enjoyed great 

popularity due to its large number of available workers. MTurk allows a 
requester to post the task, called human intelligence task, and the 
turkers (workers) around the world execute the assigned task in a short 
span of time and get paid on a task-by-task basis. Since image anno
tations on MTurk are performed by non-experts, quality control is im
portant to obtain high-quality annotated data. Recently, MTurk based 
crowdsourcing has been used for annotating image datasets for detec
tion of corn tassels (Zhou et al., 2018) and leaf disease (Wiesner-Hanks 
et al., 2019). Given the ease of large-scale image annotation, more ef
forts will be anticipated on crowdsourcing image datasets in precision 
agriculture. 

3.4. Data sharing 

To create a public dataset, the image data, including ground-truth 
annotation files, need to be shared to be accessible to the community. 
Apart from sharing these data, the experimental setup and image ac
quisition protocols need to be sufficiently documented to facilitate data 
reuse in future algorithm design, test and comparison, and also creation 
of new datasets, especially for new researcher entering a specific do
main. To give a reference, we identify some minimum information, as 
summarized in Table 5, to document when sharing image datasets. 

A public dataset can be shared on either external platforms (see  
Table 6 for examples) or internal websites. It is noted that more than 
one half of the public datasets in this survey were shared on a research 
group, university or personal website. However, there is a risk that 
these webpages may change over time (e.g., due to university website 
updates or group name changes), leading to invalid links to the shared 
data or even data loss. The external platforms as shown in Table 6, on 
the other hand, are less likely to change in the near future, as they have 
a large volume of registered users worldwide. Moreover, these plat
forms provide useful capabilities such as backup, version control, col
laboration management and digital object identifier assignment, all of 
which help ensure better sustainability of the data. Hence whenever 
possible it is more preferable to share image datasets on such external 
platforms that allow the data to be preserved over time and help others 
to find it easily. 

4. Conclusions 

Publicly available image datasets are valuable in precision agri
culture as they reduce the effort for data collection and preparation and 
enable development and evaluation of better-performing algorithms for 
various vision tasks. This survey paper fills a critical gap in precision 
agriculture literature by providing the first comprehensive review of 
the public image datasets of the application of computer vision since 
2015. We have identified a total of 34 public image datasets and ca
tegorized them into three classes based on targeted applications, in
cluding 15 datasets on weed control, 10 datasets on fruit detection and 
the remaining 9 datasets for other applications. This survey covers the 
main characteristics of each dataset, involving image acquisition, 

Table 4 
Examples of common image annotators.     

Annotator Annotation type URL  

COCO Annotator Bounding box, polygon, point, freehand https://github.com/jsbroks/coco-annotator 
CVAT Bounding box, polygon, polyline, points https://github.com/opencv/cvat 
ImageTagger Bounding box, polygon, line, point https://github.com/bit-bots/imagetagger 
imglab Bounding box, polygon, circle, ellipse, point https://github.com/NaturalIntelligence/imglab 
labelImg Bounding box https://github.com/tzutalin/labelImg 
LabelMe Bounding box, polygon, circle, line, point https://github.com/wkentaro/labelme 
OpenLabeling Bounding box https://github.com/Cartucho/OpenLabeling 
Yolo_mark Bounding box https://github.com/AlexeyAB/Yolo_mark 
VIA Bounding box, polygon, circle, ellipse, polyline, point http://www.robots.ox.ac.uk/~vgg/software/via/ 
VoTT Bounding box, polygon https://github.com/microsoft/VoTT 
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dataset structure, annotations, applications and potential limitations, 
and thereafter discusses the key considerations regarding image ac
quisition, augmentation, annotation and data sharing, for creating high- 
quality public image datasets. This paper will allow researchers to 
readily select the datasets appropriate for their needs and also facilitate 
creating new image datasets for enabling precision agriculture tasks. 
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Imaging configuration Platform (e.g., handholding or ground vehicle based), lens information (e.g., focal length, F-number), camera distance from the scene, and controlled 

lighting used or not 
Field site Open fields or greenhouse settings, weather conditions during image acquisition, and crop information (e.g., crop type and growth stage) 
Image data Image format (e.g., png and jpeg), resolution, image number, and raw or preprocessed data 
Annotation Annotation types (e.g., image level or bounding box), classes of annotated objects, number of instances per category 

Table 6 
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